If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+26x-120=0
a = 3; b = 26; c = -120;
Δ = b2-4ac
Δ = 262-4·3·(-120)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-46}{2*3}=\frac{-72}{6} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+46}{2*3}=\frac{20}{6} =3+1/3 $
| -2m=-6-m | | 4x-6/3-7=3 | | 0.15x=30 | | 5g-12+12g=1-g | | 4(3x-13)=18 | | 4y=7+9 | | -5d=13 | | 8(-8v+2)=400 | | 6y+1=23 | | -7+3r=-1+2r | | 2b+1+2b=21 | | (3x+8)(8x+3)=0 | | 170+.40x=80+.70x | | |2x-3|=2x-1 | | 4p+7=3+4p | | 3(x=5)=21 | | 3/4(5-2w/3)+4=1/2(8/3-w) | | X+(x-13)=55 | | |2x+5|=|x| | | 6x+13/2=-4 | | 5(2r+3)=85 | | 4x−8=1x−29 | | 2(2x-4)=4x+3 | | 2x+7=-20 | | n²=-144 | | 5(2r+3=85) | | (u-8)=-9u+6 | | 7=-3/4n | | 6x-20=2(3x-10) | | 3.8-1.8x=9 | | -8+4v=4v-5 | | X-13+(x-2)=55 |